Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Searching for Fast Demosaicking Algorithms

Published Web Location

https://dl.acm.org/doi/full/10.1145/3508461
No data is associated with this publication.
Creative Commons 'BY' version 4.0 license
Abstract

We present a method to automatically synthesize efficient, high-quality demosaicking algorithms, across a range of computational budgets, given a loss function and training data. It performs a multi-objective, discrete-continuous optimization which simultaneously solves for the program structure and parameters that best tradeoff computational cost and image quality. We design the method to exploit domain-specific structure for search efficiency. We apply it to several tasks, including demosaicking both Bayer and Fuji X-Trans color filter patterns, as well as joint demosaicking and super-resolution. In a few days on 8 GPUs, it produces a family of algorithms that significantly improves image quality relative to the prior state-of-the-art across a range of computational budgets from 10 s to 1000 s of operations per pixel (1 dB–3 dB higher quality at the same cost, or 8.5–200× higher throughput at same or better quality). The resulting programs combine features of both classical and deep learning-based demosaicking algorithms into more efficient hybrid combinations, which are bandwidth-efficient and vectorizable by construction. Finally, our method automatically schedules and compiles all generated programs into optimized SIMD code for modern processors.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item