Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Electronic Theses and Dissertations bannerUC Riverside

On Riemannian Submersions and Diffeomorphism Stability

Abstract

This thesis consists of work that was carried out in three separate papers that were written during my time at UC, Riverside.

Abstract of chapter II: If $\pi:M\rightarrow B$ is a Riemannian Submersion and $M$ has non-negative sectional curvature, O'Neill's Horizontal Curvature Equation shows that $B$ must also have non-negative curvature. We find constraints on the extent to which O'Neill's horizontal curvature equation can be used to create positive curvature on the base space of a Riemannian submersion. In particular, we study when K. Tapp's theorem on Riemannian submersions of compact Lie groups with bi-invariant metrics generalizes to arbitrary manifolds of non-negative curvature.

Abstract of Chapter III: Though Riemannian submersions preserve non-negative sectional curvature this does not generalize to Riemannian submersions from manifolds with non-negative Ricci curvature. We give here an example of a Riemannian submersion $\pi: M\rightarrow B$ for which $\textrm{Ricci}_p(M)>0$ and at some point $p\in B$, $\text{Ricci}_p(B)<0$.

Abstract of Chapter IV: The smallest $r$ so that a metric $r$--ball covers a metric space $M$ is called the radius of $M.$ The volume of a metric $r$-ball in the space form of constant curvature $k$ is an upper bound for the volume of any Riemannian manifold with sectional curvature $\geq k$ and radius $\leq r$. We show that when such a manifold has volume almost equal to this upper bound, it is diffeomorphic to a sphere or a real projective space.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View