Skip to main content
eScholarship
Open Access Publications from the University of California

A general strategy for expanding polymerase function by droplet microfluidics.

  • Author(s): Larsen, Andrew C
  • Dunn, Matthew R
  • Hatch, Andrew
  • Sau, Sujay P
  • Youngbull, Cody
  • Chaput, John C
  • et al.

Published Web Location

http://www.nature.com/articles/ncomms11235
No data is associated with this publication.
Abstract

Polymerases that synthesize artificial genetic polymers hold great promise for advancing future applications in synthetic biology. However, engineering natural polymerases to replicate unnatural genetic polymers is a challenging problem. Here we present droplet-based optical polymerase sorting (DrOPS) as a general strategy for expanding polymerase function that employs an optical sensor to monitor polymerase activity inside the microenvironment of a uniform synthetic compartment generated by microfluidics. We validated this approach by performing a complete cycle of encapsulation, sorting and recovery on a doped library and observed an enrichment of ∼1,200-fold for a model engineered polymerase. We then applied our method to evolve a manganese-independent α-L-threofuranosyl nucleic acid (TNA) polymerase that functions with >99% template-copying fidelity. Based on our findings, we suggest that DrOPS is a versatile tool that could be used to evolve any polymerase function, where optical detection can be achieved by Watson-Crick base pairing.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content

This item is under embargo until December 31, 2999.

You may have access to the publisher's version here:

http://www.nature.com/articles/ncomms11235Notify me by email when this item becomes available