Skip to main content
Open Access Publications from the University of California

Finding succinct ordered minimal perfect hashing functions


An ordered minimal perfect hash table is one in which no collisions occur among a predefined set of keys, no space is unused, and the data are placed in the table in order. A new method for creating ordered minimal perfect hashing functions is presented. The method presented is based on a method developed by Fox, Heath, Daoud, and Chen, but it creates hash functions with representation space requirements closer to the theoretical lower bound. The method presented requires approximately 10% less space to represent generated hash functions, and is easier to implement than Fox et al's. However, a higher time complexity makes it practical for small sets only (< 1000).

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View