Skip to main content
Open Access Publications from the University of California

Department of Statistics, UCLA

Department of Statistics Papers bannerUCLA

On Weight Matrix and Free Energy Models for Sequence Motif Detection


The problem of motif detection can be formulated as the construction of a discriminant function to separate sequences of a specific pattern from background. In computational biology, motif detection is used to predict DNA binding sites of a transcription factor (TF), mostly based on the weight matrix (WM) model or the Gibbs free energy (FE) model. However, despite the wide applications, theoretical analysis of these two models and their predictions is still lacking. We derive asymptotic error rates of prediction procedures based on these models under different data generation assumptions. This allows a theoretical comparison between the WM-based and the FE-based predictions in terms of asymptotic efficiency. Applications of the theoretical results are demonstrated with empirical studies on ChIP-seq data and protein binding microarray data. We find that, irrespective of underlying data generation mechanisms, the FE approach shows higher or comparable predictive power relative to the WM approach when the number of observed binding sites used for constructing a discriminant decision is not too small.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View