Skip to main content
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Electronic Theses and Dissertations bannerUC Berkeley

Monodromy of Fukaya-Seidel categories mirror to toric varieties


Mirror symmetry for a toric variety involves Laurent polynomials whose symplectic topology is related to the algebraic geometry of the toric variety. We show that there is a monodromy action on the Fukaya-Seidel categories of these Laurent polynomials as the arguments of their coefficients vary that corresponds under homological mirror symmetry to tensoring by a line bundle naturally associated to the monomials whose coefficients are rotated. In the process, we introduce a new interpretation of the Fukaya-Seidel category of a Laurent polynomial on (C*)^n, which has other potential applications, and give evidence of homological mirror symmetry for non-compact toric varieties by computing certain Floer-theoretic natural transformations.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View