Skip to main content
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

A parallel stranded G-quadruplex composed of threose nucleic acid (TNA).

  • Author(s): Liao, Jen-Yu;
  • Anosova, Irina;
  • Bala, Saikat;
  • Van Horn, Wade D;
  • Chaput, John C
  • et al.

Published Web Location
No data is associated with this publication.

G-rich sequences can adopt four-stranded helical structures, called G-quadruplexes, that self-assemble around monovalent cations like sodium (Na+ ) and potassium (K+ ). Whether similar structures can be formed from xeno-nucleic acid (XNA) polymers with a shorter backbone repeat unit is an unanswered question with significant implications on the fold space of functional XNA polymers. Here, we examine the potential for TNA (α-l-threofuranosyl nucleic acid) to adopt a four-stranded helical structure based on a planar G-quartet motif. Using native polyacrylamide gel electrophoresis (PAGE), circular dichroism (CD) and solution-state nuclear magnetic resonance (NMR) spectroscopy, we show that despite a backbone repeat unit that is one atom shorter than the backbone repeat unit found in DNA and RNA, TNA can self-assemble into stable G-quadruplex structures that are similar in thermal stability to equivalent DNA structures. However, unlike DNA, TNA does not appear to discriminate between Na+ and K+ ions, as G-quadruplex structures form equally well in the presence of either ion. Together, these findings demonstrate that despite a shorter backbone repeat unit, TNA is capable of self-assembling into stable G-quadruplex structures.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item