Skip to main content
eScholarship
Open Access Publications from the University of California

Magnetoelastic hybrid excitations in CeAuAl3.

  • Author(s): Čermák, Petr
  • Schneidewind, Astrid
  • Liu, Benqiong
  • Koza, Michael Marek
  • Franz, Christian
  • Schönmann, Rudolf
  • Sobolev, Oleg
  • Pfleiderer, Christian
  • et al.
Abstract

Nearly a century of research has established the Born-Oppenheimer approximation as a cornerstone of condensed-matter systems, stating that the motion of the atomic nuclei and electrons may be treated separately. Interactions beyond the Born-Oppenheimer approximation are at the heart of magneto-elastic functionalities and instabilities. We report comprehensive neutron spectroscopy and ab initio phonon calculations of the coupling between phonons, CEF-split localized 4f electron states, and conduction electrons in the paramagnetic regime of [Formula: see text], an archetypal Kondo lattice compound. We identify two distinct magneto-elastic hybrid excitations that form even though all coupling constants are small. First, we find a CEF-phonon bound state reminiscent of the vibronic bound state (VBS) observed in other materials. However, in contrast to an abundance of optical phonons, so far believed to be essential for a VBS, the VBS in [Formula: see text] arises from a comparatively low density of states of acoustic phonons. Second, we find a pronounced anticrossing of the CEF excitations with acoustic phonons at zero magnetic field not observed before. Remarkably, both magneto-elastic excitations are well developed despite considerable damping of the CEFs that arises dominantly by the conduction electrons. Taking together the weak coupling with the simultaneous existence of a distinct VBS and anticrossing in the same material in the presence of damping suggests strongly that similarly well-developed magneto-elastic hybrid excitations must be abundant in a wide range of materials. In turn, our study of the excitation spectra of [Formula: see text] identifies a tractable point of reference in the search for magneto-elastic functionalities and instabilities.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View