Skip to main content
eScholarship
Open Access Publications from the University of California

Analysis of in vitro evolution reveals the underlying distribution of catalytic activity among random sequences

  • Author(s): Pressman, A
  • Moretti, JE
  • Campbell, GW
  • Mueller, UF
  • Chen, IA
  • et al.

Published Web Location

https://doi.org/10.1093/nar/gkx540
No data is associated with this publication.
Abstract

The emergence of catalytic RNA is believed to have been a key event during the origin of life. Understanding how catalytic activity is distributed across random sequences is fundamental to estimating the probability that catalytic sequences would emerge. Here, we analyze the in vitro evolution of triphosphorylating ribozymes and translate their fitnesses into absolute estimates of catalytic activity for hundreds of ribozyme families. The analysis efficiently identified highly active ribozymes and estimated catalytic activity with good accuracy. The evolutionary dynamics follow Fisher's Fundamental Theorem of Natural Selection and a corollary, permitting retrospective inference of the distribution of fitness and activity in the random sequence pool for the first time. The frequency distribution of rate constants appears to be log-normal, with a surprisingly steep dropoff at higher activity, consistent with a mechanism for the emergence of activity as the product of many independent contributions.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item