Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Electronic Theses and Dissertations bannerUC Riverside

The Acoustoelectric and Electric Characterization of Single Layer Transition Metal Dichalcogenides

Abstract

The acoustoelectric effect in single-layer molybdenum disulfide (MoS2) and tungsten diselenide (WSe2) is studied in a hybrid setup. Such effects, which rely on the transfer of momentum from surface acoustic waves (SAWs), are generated on the surface of lithium niobate (LiNbO3) to the carriers in MoS2 and WSe2, resulting in an attenuation and velocity shift of the wave and giving rise to an acoustoelectric current. This dissertation examines the feasibility of integrating high-quality, single-layer MoS2 and WSe2 onto LiNbO3 to ultimately fabricate and characterize a hybrid chip that combines the functionality of a field-effect transistor (FET) and SAW device. MoS2 and WSe2 were synthesized by chemical vapor deposition (CVD) directly onto a chemically-reduced LiNbO3 substrate. LiNbO3 is a ferroelectric material that offers a unique blend of piezoelectric and birefringent properties, yet it lacks both optical activity and semiconductor transport. The prototypical device exhibits electrical characteristics that are competitive with MoS2 and WSe2 devices on silicon. These results demonstrate both a sound-driven battery and an acoustic photodetector, and ultimately open directions to non-invasive investigation of electrical properties of single-layer films. The experiments reveal close agreement between transport measurements utilizing conventional contacts and SAW spectroscopy. This approach will set forth the possibility of contact-free transport characterization of two-dimensional (2D) transition metal dichalcogenides (TMD) films, avoiding such concerns as the role of charge transfer at contacts as an artifact of such measurements.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View