Skip to main content
eScholarship
Open Access Publications from the University of California

Engineering Nanoscale Multiferroic Composites for Memory Applications with Atomic Layer Deposition of Pb(ZrxTi1-x)O3 Thin Films

  • Author(s): Chien, Diana
  • Advisor(s): Chang, Jane P
  • et al.
Abstract

This work focuses on the development of atomic layer deposition (ALD) for lead zirconate titanate, Pb(ZrxTi1-x)O3 (PZT). Leveraging the surface-reaction controlled process based on alternating self-limiting surface reactions, PZT can be synthesized not only with elemental precision to realize the desired composition (Zr/Ti = 52/48) but also with outstanding conformality. The latter enables the integration of PZT with a ferromagnetic phase to realize multiferroism (MF) and magnetoelectric (ME) effect. Since PZT is one of the best known ferroelectric and piezoelectric materials due the large displacements of the Pb ions at the morphotropic phase boundary, PZT based MF composites could lead to stronger ME coupling through strain coupling at the interface.

Specifically, ALD PZT thin films were synthesized by using beta-diketonate metalorganic precursors Pb(TMHD)2, Zr(TMHD)4, and Ti(O.i-Pr)2(TMHD)2 and H2O. The number of local cycles and global cycles were regulated to achieve the desired stoichiometry and thickness, respectively. ALD of PZT was studied to obtain (100) textured PZT on Pt (111) oriented platinized silicon substrates. In order to attain a highly oriented PZT thin film, a (100) textured PbTiO3 seed layer was required because PZT orientation is governed by nucleation.

MF nanocomposites were engineered using ALD PZT thin films to achieve controlled complex nanoscale structures, enabling porosity to be studied as a new additional parameter for nancomposite architectures to enhance ME effect. Specifically, 3-6 nm-thick ALD PZT thin films were deposited to uniformly coat the walls of mesoporous cobalt ferrite (CFO) template. The PZT/CFO nanocomposites were electrically poled ex-situ and the change in magnetic moment was measured. The inverse magnetoelectric coupling coefficient, α, was determined to be 85.6 Oe-cm/mV. The in-plane results show no significant change in magnetization (1–4%) as a function of electric field, which was expected due to the effect of substrate clamping. The out-of-plane magnetization showed that the mesoporous CFO coated with 3-nm-thick PZT film had a greater saturation magnetization change of 15% compared to 10% for the 6-nm-thick PZT film. This indicates that the flexibility in the partially filled pores enhances the ME coupling.

Additionally, ALD PZT films were integrated between MgO and CoFeB layers to fabricate magnetic tunnel junctions (MTJ), which was the first work to demonstrate increased voltage controlled magnetic anisotropy (VCMA) effect in a complete MTJ stack using a high dielectric material within the tunnel barrier and exhibit sizeable tunneling magnetoresistance (TMR) at room temperature. The fabricated PZT MTJs with the MgO/PZT/MgO barrier demonstrated a VCMA coefficient which is ~40% higher (20 fJ/V-m) than MgO MTJs (14 fJ/V-m) and TMR of more than 50% at room temperature, comparable to that of the MgO MTJs. The enhanced VCMA coefficient and sizeable TMR makes PZT MTJs potential candidates for future voltage-controlled, ultralow-power magnetic random access memory devices.

ALD enables the growth of conformal ultra-thin PZT films, which can then be integrated to engineer nanoscale multiferroic composites for various applications.

Main Content
Current View