Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Chaotic Dynamics of Inner Ear Hair Cells

Abstract

Experimental records of active bundle motility are used to demonstrate the presence of a low-dimensional chaotic attractor in hair cell dynamics. Dimensionality tests from dynamic systems theory are applied to estimate the number of independent variables sufficient for modelling the hair cell response. Poincaré maps are constructed to observe a quasiperiodic transition from chaos to order with increasing amplitudes of mechanical forcing. The onset of this transition is accompanied by a reduction of Kolmogorov entropy in the system and an increase in transfer entropy between the stimulus and the hair bundle, indicative of signal detection. A simple theoretical model is used to describe the observed chaotic dynamics. The model exhibits an enhancement of sensitivity to weak stimuli when the system is poised in the chaotic regime. We propose that chaos may play a role in the hair cell's ability to detect low-amplitude sounds.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View