Skip to main content
Open Access Publications from the University of California

Thermal imaging comparison of Signature, Infiniti, and Stellaris phacoemulsification systems

  • Author(s): Ryoo, Na
  • Kwon, Ji-Won
  • Wee, Won
  • Miller, Kevin M
  • Han, Young
  • et al.

Abstract Background To compare the heat production of 3 different phacoemulsification machines under strict laboratory test conditions. More specifically, the thermal behavior was analyzed between the torsional modality of the Infiniti system and longitudinal modalities of the Abbot WhiteStar Signature Phacoemulsification system and Bausch and Lomb Stellaris system. Methods Experiments were performed under in-vitro conditions in this study.Three phacoemulsification handpieces (Infiniti, Signature, and Stellaris) were inserted into balanced salt solution-filled silicone test chambers and were imaged side-by-side by using a thermal camera. Incision compression was simulated by suspending 30.66-gram weights from the silicone chambers. The irrigation flow rate was set at 0, 1, 2, 3, 4, and 5 cc/min and the phacoemulsification power on the instrument consoles was set at 40, 60, 80, and 100%. The highest temperatures generated from each handpiece around the point of compression were measured at 0, 10, 30, and 60 seconds. Results Under the same displayed phacoemulsification power settings, the peak temperatures measured when using the Infiniti were lower than when using the other two machines, and the Signature was cooler than the Stellaris. At 10 seconds, torsional phacoemulsification with Infiniti at 100% power showed data comparable to that of the Signature at 80% and the Stellaris at 60%. At 30 seconds, the temperature from the Infiniti at 100% power was lower than the Signature at 60% and the Stellaris at 40%. Conclusions Torsional phacoemulsification with the Infiniti generates less heat than longitudinal phacoemulsification with the Signature and the Stellaris. Lower operating temperatures indicate lower heat generation within the same fluid volume, which may provide additional thermal protection during cataract surgery.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View