Skip to main content
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Star Formation Quenching Timescale of Central Galaxies in a Hierarchical Universe

Published Web Location
No data is associated with this publication.

Central galaxies make up the majority of the galaxy population, including the majority of the quiescent population at M∗ > 1010M⊙. Thus, the mechanism(s) responsible for quenching central galaxies play a crucial role in galaxy evolution as whole. We combine a high-resolution cosmological N-body simulation with observed evolutionary trends of the "star formation main sequence," quiescent fraction, and stellar mass function at z < 1 to construct a model that statistically tracks the star formation histories and quenching of central galaxies. Comparing this model to the distribution of central galaxy star formation rates in a group catalog of the SDSS Data Release 7, we constrain the timescales over which physical processes cease star formation in central galaxies. Over the stellar mass range 109.5-1011M⊙ we infer quenching e-folding times that span 1.5-0.5 Gyr with more massive central galaxies quenching faster. For M∗ = 1010.5M⊙, this implies a total migration time of ∼4 Gyr from the star formation main sequence to quiescence. Compared to satellites, central galaxies take ∼2 Gyr longer to quench their star formation, suggesting that different mechanisms are responsible for quenching centrals versus satellites. Finally, the central galaxy quenching timescale we infer provides key constraints for proposed star formation quenching mechanisms. Our timescale is generally consistent with gas depletion timescales predicted by quenching through strangulation. However, the exact physical mechanism(s) responsible for this remain unclear.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item