Skip to main content
eScholarship
Open Access Publications from the University of California

An auto-tuning framework for parallel multicore stencil computations

  • Author(s): Kamil, S
  • Chan, C
  • Oliker, L
  • Shall, J
  • Williams, S
  • et al.
Abstract

Although stencil auto-tuning has shown tremendous potential in effectively utilizing architectural resources, it has hitherto been limited to single kernel instantiations; in addition, the large variety of stencil kernels used in practice makes this computation pattern difficult to assemble into a library. This work presents a stencil auto-tuning framework that significantly advances programmer productivity by automatically converting a straightforward sequential Fortran 95 stencil expression into tuned parallel implementations in Fortran, C, or CUDA, thus allowing performance portability across diverse computer architectures, including the AMD Barcelona, Intel Nehalem, Sun Victoria Falls, and the latest NVIDIA GPUs. Results show that our generalized methodology delivers significant performance gains of up to 22× speedup over the reference serial implementation. Overall we demonstrate that such domain-specific auto-tuners hold enormous promise for architectural efficiency, programmer productivity, performance portability, and algorithmic adaptability on existing and emerging multicore systems. © 2010 IEEE.

Main Content
Current View