Skip to main content
Open Access Publications from the University of California

The response of a predatory fish, Opiodon elongatus, to a marine protected area: variation in diet, catch rates, and size composition


Marine Protected Areas (MPAs) are a management tool used to protect and sustain many ecologically and economically important fish species from overexploitation by recreational and commercial fishing. Lingcod (Ophiodon elongatus) and some of its prey species, such as rockfish (Sebastes spp.), are species that are protected from fishing in some California MPAs. Lingcod is an apex predator that consumes a variety of fish and invertebrate species. In this study, I sought to assess the effect of an MPA on the abundance, size and diet of Lingcod. I hypothesized that Lingcod in a no-take MPA would be more abundant and larger than Lingcod in an adjacent reference site (REF) that was open to fishing. Furthermore, I hypothesized that diet would differ between Lingcod in caught the MPA and Lingcod in the REF. I collected Lingcod from the Point Buchon State Marine Reserve (MPA) and an adjacent REF site that was open to fishing. I measured, weighed, sexed, and collected stomach contents from Lingcod using the gastric lavage (stomach pumping) technique. Then, I identified prey items from Lingcod stomach contents down to the lowest taxonomic level possible and quantified diet composition by percent by occurrence, percent by number, and percent by mass. Lingcod in the MPA consumed more fish prey items than Lingcod in the REF site. Lingcod in the REF consumed more cephalopod prey items than Lingcod in the MPA. I analyzed the four most common prey items (rockfish, anchovies, flatfish, and octopus) for nutritional content. My data suggest that Lingcod increased in size and abundance in a no-take MPA because they do not suffer from fishing mortality. However, a more nutritious diet could also contribute to a biologically significant advantage for Lingcod in the MPA. To address this would require further research focused on calculating the net energy (gross energy extracted from the prey item minus the energetic costs of handling and digesting the prey item) obtained by Lingcod from consuming different fish and cephalopod prey items. MPAs can be an effective management tool for protecting fish stocks, although, it is important to understand the interspecific interactions between predator and prey species to adaptively mange MPAs and the species that reside within them.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View