Hydrostatic Pressure Studies Distinguish Global from Local Protein Motions in C−H Activation by Soybean Lipoxygenase‐1
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Hydrostatic Pressure Studies Distinguish Global from Local Protein Motions in C−H Activation by Soybean Lipoxygenase‐1

Published Web Location

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10906245/
No data is associated with this publication.
Creative Commons 'BY' version 4.0 license
Abstract

Abstract: The proposed contributions of distinct classes of local versus global protein motions during enzymatic bond making/breaking processes has been difficult to verify. We employed soybean lipoxygenase‐1 as a model system to investigate the impact of high pressure at variable temperatures on the hydrogen‐tunneling properties of the wild‐type protein and three single‐site mutants. For all variants, pressure dramatically elevates the enthalpies of activation for the C−H activation. In contrast, the primary kinetic isotope effects (KIEs) for C−H activation and their corresponding temperature dependencies remain unchanged up to ca. 700 bar. The differential impact of elevated hydrostatic pressure on the temperature dependencies of rate constants versus substrate KIEs provides direct evidence for two distinct classes of protein motions: local, isotope‐dependent donor–acceptor distance‐sampling modes, and a more global, isotope‐independent search for productive protein conformational sub‐states.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item