Skip to main content
Open Access Publications from the University of California

On a Notion of Cohen-Macaulay and the Non-vanishing of Čech Cohomology Modules

  • Author(s): Walker, Andrew James
  • Advisor(s): Rush, David E.
  • et al.
Creative Commons 'BY' version 4.0 license

In this paper, we study the Cohen-Macaulay property of a general commutative ring with unity defined by Hamilton and Marley. We give sufficient conditions on pullback constructions, fixed rings, and normal monoid rings to all be Cohen-Macaulay in this sense. We also exhibit a class of quasi-local rings where the top Čech cohomology module with respect to a sequence generating the maximal ideal up to radical is non-vanishing.

Main Content
Current View