Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

EVIDENCE FOR UBIQUITOUS COLLIMATED GALACTIC-SCALE OUTFLOWS ALONG THE STAR-FORMING SEQUENCE AT z ∼ 0.5

Published Web Location

https://arxiv.org/abs/1307.1476
No data is associated with this publication.
Abstract

We analyze Mg II λλ2796, 2803 and Fe II λλ2586, 2600 absorption profiles in individual spectra of 105 galaxies at 0.3 < z < 1.4. The galaxies, drawn from redshift surveys of the GOODS fields and the Extended Groth Strip, sample the range in star formation rates (SFRs) occupied by the star-forming sequence with stellar masses log M ∗/M ≳ 9.6 down to SFR ≳ 2 M yr-1 at 0.3 < z < 0.7. Using the Doppler shifts of Mg II and Fe II absorption as tracers of cool gas kinematics, we detect large-scale winds in 66 ± 5% of the galaxies. Hubble Space Telescope Advanced Camera for Surveys imaging and our spectral analysis indicate that the outflow detection rate depends primarily on galaxy orientation: winds are detected in ∼89% of galaxies having inclinations (i) <30° (face-on), while the wind detection rate is ∼45% in objects having i > 50° (edge-on). Combined with the comparatively weak dependence of wind detection rate on intrinsic galaxy properties, this implies that biconical outflows are ubiquitous in normal, star-forming galaxies at z ∼ 0.5. We find that wind velocity is correlated with galaxy M ∗ at 3.4σ significance, while outflow equivalent width is correlated with SFR at 3.5σ significance, suggesting hosts with higher SFR launch more material and/or generate a larger velocity spread for the absorbing clouds. Assuming the gas is driven into halos with isothermal density profiles, the wind velocities (∼200-400 km s-1) permit escape from the halo potentials only for the lowest-M ∗ systems in the sample. However, the gas carries sufficient energy to reach distances ≳ 50 kpc, and may therefore be a viable source of material for the massive, cool circumgalactic medium around bright galaxies at z ∼ 0.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item