Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

GLOBULAR CLUSTERS AND DARK SATELLITE GALAXIES THROUGH THE STREAM VELOCITY

Abstract

The formation of purely baryonic globular clusters with no gravitationally bound dark matter is still a theoretical challenge. We show that these objects might form naturally whenever there is a relative stream velocity between baryons and dark matter. The stream velocity causes a phase shift between linear modes of baryonic and dark matter perturbations, which translates to a spatial offset between the two components when they collapse. For a 2σ (3σ) density fluctuation, baryonic clumps with masses in the range 105-2.5 × 106 M⊙ (105-4 × 106 M⊙) collapse outside the virial radii of their counterpart dark matter halos. These objects could survive as long-lived, dark-matter-free objects and might conceivably become globular clusters. In addition, their dark matter counterparts, which were deprived of gas, might become dark satellite galaxies. © 2014. The American Astronomical Society. All rights reserved.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View