Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

A Plant Immune Receptor Adopts a Two-Step Recognition Mechanism to Enhance Viral Effector Perception

Published Web Location

https://www.ncbi.nlm.nih.gov/pubmed/30639751
No data is associated with this publication.
Abstract

Plant intracellular nucleotide binding leucine-rich repeat (NLR) immune receptors play critical roles in pathogen surveillance. Most plant NLRs characterized so far were found to use a single domain/sensor to recognize pathogen effectors. Here we report that the Sw-5b NLR immune receptor uses two distinct domains to detect the viral movement protein NSm encoded by tospovirus. In addition to its leucine-rich repeat (LRR) domain that has been previously reported, the N-terminal Solanaceae domain (SD) of Sw-5b also interacts with NSm and a conserved 21-amino-acid region of NSm (NSm21). The specific interaction between Sw-5b SD and NSm is required for releasing the inhibitory effect of coiled-coil domain on the NB-ARC-LRR region. Furthermore, we found that the binding of NSm affects the nucleotide binding activity of the NB-ARC-LRR in vitro, while Sw-5b NB-ARC-LRR is activated only when NSm and NSm21 levels are high. Interestingly, Sw-5b SD could significantly enhance the ability of the NB-ARC-LRR to detect low levels of NSm effector and facilitate its activation and induction of defense response. An Sw-5b SD mutant that is disrupted in NSm recognition failed to enhance the ability of the NB-ARC-LRR to sense low levels of NSm and NSm21. Taken together, our results suggest that Sw-5b SD functions as an extra sensor and the NB-ARC-LRR as an activator, and that Sw-5b NLR adopts a two-step recognition mechanism to enhance viral effector perception.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item