Skip to main content
eScholarship
Open Access Publications from the University of California

Sequence variation in folate pathway genes and risks of human cleft lip with or without cleft palate.

  • Author(s): Marini, Nicholas J
  • Yang, Wei
  • Asrani, Kripa
  • Witte, John S
  • Rine, Jasper
  • Lammer, Edward J
  • Shaw, Gary M
  • et al.

Published Web Location

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5634616/
No data is associated with this publication.
Abstract

In an effort to comprehensively interrogate genetic variation in the folate pathway for risk of cleft lip with or without cleft palate (CLP), we evaluated 504 common and rare variants in 35 folate-related genes in a panel of 330 infants with CLP and 367 non-malformed controls. Odds ratios (OR) with 95% confidence intervals were computed for common genotypes. A Case-Control Difference metric was calculated for rare variants to highlight differentially occurring alleles. Interactions between variants and a maternal folate intake variable were also evaluated. In gene-only results, significant odds ratios were observed for multiple variants in the BHMT/BHMT2/DMGDH gene cluster, particularly in Hispanic infants. Also in this cluster, rare variant analysis highlighted a substantial case-control difference in BHMT rs60340837 (synonymous Y284Y). In Hispanics, the ALDH1L1 I812V variant (rs4646750) was the most significant risk allele: OR = 3.8 (95%CI = 1.6-9.2) when heterozygous. In non-Hispanic white infants, we observed significant risk for AHCYL2 rs1095423 (homozygous OR = 3.0, 95%CI 1.1-7.8) and the 68 bp CBS insertion (c.844ins68; heterozygous OR = 2.4, 95%CI = 1.1-5.3). Rare variant analysis in this group revealed case-control differences in MTRR and several other methionine cycle genes, a process implicated previously in clefting risk. In women with low folate intake specifically, increased risks were observed for CBS rs2851391 (OR = 3.6, 95%CI = 1.3-9.6) and the R259P nonsynonymous variant of TCN2 (rs1801198; OR = 2.8, 95%CI = 1.2-6.3). This comprehensive study provides further direction on candidate loci to help disentangle the folate-related developmental phenomena in human clefting risk. © 2016 Wiley Periodicals, Inc.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item