Skip to main content
Open Access Publications from the University of California

Near-Cognate Codons Contribute Complexity to Translation Regulation.

  • Author(s): Glass, N Louise
  • et al.

Published Web Location
No data is associated with this publication.

The interplay between translation initiation, modification of translation initiation factors, and selection of start sites on mRNA for protein synthesis can play a regulatory role in the cellular response to stress, development, and cell fate in eukaryotic species by shaping the proteome. As shown by Ivanov et al. (mBio 8:e00844-17, 2017,, in the filamentous fungus Neurospora crassa, both upstream open reading frames (uORFs) and near-cognate start codons negatively or positively regulate the translation of the transcription factor CPC1 and production of CPC1 isoforms, which mediate the cellular response to amino acid starvation. Dissecting the physiological roles that differentiate cellular choice of translation initiation is an important parameter to understanding mechanisms that determine cell fate via gene regulation and protein synthesis.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item