Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Cruz

UC Santa Cruz Electronic Theses and Dissertations bannerUC Santa Cruz

On the Dynamics of Inverse Magnetic Billiards

Creative Commons 'BY' version 4.0 license
Abstract

Consider a strictly convex set $\Omega$ in the plane, and a homogeneous, stationary magnetic field orthogonal to the plane whose strength is B on the complement of $\Omega$ and 0 inside $\Omega$. The trajectories of a charged particle in this setting are straight lines concatenated with circular arcs of Larmor radius $\mu$. We examine the dynamics of such a particle and call this inverse magnetic billiards. Comparisons are made to standard Birkhoff billiards and magnetic billiards, as some theorems regarding inverse magnetic billiards are consistent with each of these billiard variants while others are not.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View