Skip to main content
eScholarship
Open Access Publications from the University of California

Radiation-induced alterations in synaptic neurotransmission of dentate granule cells depend on the dose and species of charged particles

  • Author(s): Marty, VN
  • Vlkolinsky, R
  • Minassian, N
  • Cohen, T
  • Nelson, GA
  • Spigelman, I
  • et al.

Published Web Location

https://doi.org/10.1667/RR13647.1
Abstract

© 2014 by Radiation Research Society. The evaluation of potential health risks associated with neuronal exposure to space radiation is critical for future long duration space travel. The purpose of this study was to evaluate and compare the effects of low-dose proton and high-energy charged particle (HZE) radiation on electrophysiological parameters of the granule cells in the dentate gyrus (DG) of the hippocampus and its associated functional consequences. We examined excitatory and inhibitory neurotransmission in DG granule cells (DGCs) in dorsal hippocampal slices from male C57BL/6 mice at 3 months after whole body irradiation with accelerated proton, silicon or iron particles. Multielectrode arrays were used to investigate evoked field synaptic potentials, an extracellular measurement of synaptic excitability in the perforant path to DG synaptic pathway. Whole-cell patch clamp recordings were used to measure miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs) in DGCs. Exposure to proton radiation increased synaptic excitability and produced dose-dependent decreases in amplitude and charge transfer of mIPSCs, without affecting the expression of γ-aminobutyric acid type A receptor α2, β3 and γ2 subunits determined by Western blotting. Exposure to silicon radiation had no significant effects on synaptic excitability, mEPSCs or mIPSCs of DGCs. Exposure to iron radiation had no effect on synaptic excitability and mIPSCs, but significantly increased mEPSC frequency at 1 Gy, without changes in mEPSC kinetics, suggesting a presynaptic mechanism. Overall, the data suggest that proton and HZE exposure results in radiation dose- and species-dependent long-lasting alterations in synaptic neurotransmission, which could cause radiation-induced impairment of hippocampal-dependent cognitive functions.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View