Skip to main content
eScholarship
Open Access Publications from the University of California

Effects of spaceflight and thyroid deficiency on hindlimb development. I. Muscle mass and IGF-I expression.

  • Author(s): Adams, G R
  • McCue, S A
  • Bodell, P W
  • Zeng, M
  • Baldwin, K M
  • et al.
Creative Commons Attribution 4.0 International Public License
Abstract

Thyroid deficiency (TD) in neonatal rats causes reduced growth of skeletal muscle that is disproportionately greater than that for other tissues (G. R. Adams, S. A. McCue, M. Zeng, and K. M. Baldwin. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 276: R954-R961, 1999). TD depresses plasma insulin-like growth factor I (IGF-I) levels, suggesting a mechanism for this effect. We hypothesized that TD and exposure to spaceflight (SF) would interact to reduce skeletal muscle growth via a reduction in IGF-I levels. Neonatal rats were flown in space for 16 days. There was a similar, nonadditive reduction in the growth of the body ( approximately 50%) and muscle weight (fast muscles, approximately 60%) with either TD or SF. In the soleus muscle, either SF or TD alone resulted in growth reductions that were augmented by SF-TD interactions. There were strong correlations between 1) muscle mass and muscle IGF-I levels and 2) circulating IGF-I and body weight. These results indicate that either hypothyroidism or exposure to SF will limit the somatic and muscle-specific growth of neonatal rats. The impact of these perturbations on skeletal muscle growth is relatively greater than the effect on somatic growth. The mechanisms by which either TD or SF impact growth appear to have a common pathway involving the control of plasma and muscle IGF-I concentrations.

Main Content
Current View