Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Optimal flip angle for high contrast balanced SSFP cardiac cine imaging

Published Web Location

https://doi.org/10.1002/mrm.25228
Abstract

Purpose: To determine the optimal flip angle (FA) for cardiac cine imaging that maximizes myocardial signal and blood-myocardium contrast. Methods: Bloch equation simulations of stationary myocardium and flowing blood with an imperfect slice profile were compared to in vivo measurements of blood and myocardium signal-to-noise ratio (SNR) and blood-myocardium contrast-to-noise ratio (CNR) in healthy subjects (N = 10) in the short-axis and four-chamber views and in patients (N = 7) in the three-chamber imaging plane. Results: Left ventricular (LV) and right ventricular (RV) blood SNR and blood-myocardium CNR increases with increasing FA up to ≈105° in the short-axis view. A similar trend is seen in the RV four-chamber view, but a marked SNR difference between the LV and RV blood appears for FA>75°, especially during systole. Notable RV and LV SNR and CNR differences are also evident in the three-chamber view due to the predominant LV in-plane flow versus RV through-plane flow. Conclusion: Very high blood-myocardium CNR can be obtained with a FA of ≈105° in the short-axis plane and ≈75° in the three-chamber and four-chamber imaging planes. However, if through-plane flow is limited, as may occur for patients with low ejection fraction or low heart rates, then the FA may be limited to ≈75°.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View