Skip to main content
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Physical Activity Change in an RCT: Comparison of Measurement Methods

Published Web Location
No data is associated with this publication.

Objectives: We aimed to quantify the agreement between self-report, standard cut-point accelerometer, and machine learning accelerometer estimates of physical activity (PA), and exam- ine how agreement changes over time among older adults in an intervention setting. Methods: Data were from a randomized weight loss trial that encouraged increased PA among 333 postmenopausal breast cancer survivors. PA was estimated using accelerometry and a validated questionnaire at baseline and 6-months. Accelerometer data were processed using standard cut-points and a validated machine learning algorithm. Agreement of PA at each time-point and change was assessed using mixed effects regression models and concordance correlation. Results: At baseline, self-report and machine learning provided similar PA estimates (mean dif- ference = 11.5 min/day) unlike self-report and standard cut-points (mean difference = 36.3 min/ day). Cut-point and machine learning methods assessed PA change over time more similarly than other comparisons. Specifically, the mean difference of PA change for the cut-point versus machine learning methods was 5.1 min/day for intervention group and 2.9 in controls, whereas it was ≥ 24.7 min/day for other comparisons. Conclusions: Intervention researchers are facing the issue of self-report measures introducing bias and accelerometer cut-points being insensi- tive. Machine learning approaches may bridge this gap.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item