Skip to main content
Download PDF
- Main
An averaging theorem for time-periodic degree zero homogeneous differential equations
Published Web Location
https://doi.org/10.1016/s0167-6911(97)00070-4Abstract
This paper considers the stability of the differential equation ẋ = εX(t,x, ε), x ∈ ℝn, where X(t,x, ε) is a time-periodic, degree zero homogeneous vector field and ε > 0 is a parameter. It is shown that asymptotic stability of the time-averaged equation implies asymptotic stability of the original system for ε sufficiently small. © 1997 Elsevier Science B.V.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%