- Main
Low Jitter Techniques for High-Speed Phase-Locked Loops
- Zhao, Yu
- Advisor(s): Razavi, Behzad
Abstract
The problem of clock generation with low jitter becomes much more challenging as wireline transceivers are designed for higher data rates, e.g., 224 Gb/s. This dissertation addresses the clock generation problem and proposes both integer-N and fractional-N phase-locked loop architectures that achieve low jitter with low power consumption. This dissertation consists of two parts. We first introduce an integer-N PLL that incorporates two new techniques. A double-sampling architecture samples both the rising and falling edge of the reference clock, which improves the in-band phase noise by 3 dB. Also, a robust retiming technique is presented to reduce the phase noise of the frequency divider. Fabricated in 28 nm CMOS technology, the 19-GHz prototype achieves an rms jitter of 20.3 fs from 10 kHz to 100 MHz with a spur of -66 dBc, all at a power of 12 mW. Next, we propose a 56-GHz fractional-N PLL targeting 224-Gb/s PAM4 transmitters. The PLL employs a novel current-mode FIR filter to avoid phase and frequency detectors (PFDs) and charge pumps and to suppress the DSM quantization noise with negligible noise folding. To provide a compact solution suited to multi-lane systems, the PLL also incorporates an inductorless divide-by-8 circuit that draws 3.1 mW. Fabricated in 28-nm CMOS technology, the PLL exhibits an rms jitter of 110 fs, consumes 23 mW, and occupies an active area of 0.1 mm2.