Skip to main content
eScholarship
Open Access Publications from the University of California

A framework for empirical discovery

Abstract

Previous research in machine learning has viewed the process of empirical discovery as search through a space of 'theoretical' terms. In this paper, we propose a problem space for empirical discovery, specifying six complementary operators for defining new terms that ease the statement of empirical laws. The six types of terms include: numeric attributes (such as PV/T); intrinsic properties (such as mass); composite objects (such as pairs of colliding balls); classes of objects (such as acids and alkalis); composite relations (such as chemical reactions); and classes of relations (such as combustion/oxidation). We review existing machine discovery systems in light of this framework, examining which parts of the problem space were, covered by these systems. Finally, we outline an integrated discovery system (IDS) we are constructing that includes all six of the operators and which should be able to discover a broad range of empirical laws.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View