Skip to main content
Open Access Publications from the University of California

Potassium fluoride postdeposition treatment with etching step on both Cu-rich and Cu-poor CuInSe2 thin film solar cells


Recent progress in the power conversion efficiency of Cu(In,Ga)Se2 thin film solar cells has been achieved by an alkali postdeposition treatment. This treatment has been shown to change the surface composition and structure as well as the bulk properties. To investigate the relative importance of those two effects we study the impact of the treatment on Cu-rich and Cu-poor CuInSe2, which show a different influence of interface recombination without the treatment. We develop a potassium postdeposition treatment that can be applied to Cu-rich material, where an additional etching step is necessary. The same postdeposition treatment with etching step is applied to Cu-poor material. In both cases we observe an increase of the power conversion efficiency and open circuit voltage. Comparing the increase in open circuit voltage to the increase in quasi-Fermi level splitting indicates that the improvement in Cu-poor solar cells is mostly due to changes in the bulk, whereas in Cu-rich solar cells both the bulk and the interface are improved. The improvement of the interface is corroborated by temperature dependent current-voltage characteristics, which show that the dominating recombination path in Cu-rich solar cells moves from the interface to the bulk after treatment and by admittance spectroscopy, which shows that the treatment removes a 200 meV deep defect. Photoluminescence spectroscopy shows that even in Cu-rich material the alkali treatment creates a Cu-poor surface, which in this case cannot be created by diffusion of Cu into the bulk, but is grown during the treatment.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View