Skip to main content
eScholarship
Open Access Publications from the University of California

Inhibition of histone H1 kinase expression, retinoblastoma protein phosphorylation, and cell proliferation by the phosphatase inhibitor okadaic acid.

  • Author(s): Schönthal, A
  • Feramisco, J R
  • et al.

Published Web Location

https://www.ncbi.nlm.nih.gov/pubmed/8381221
The data associated with this publication are managed by:
Oncogene journal
Abstract

Phosphorylation events are major regulatory mechanisms of signal transduction pathways that regulate gene expression and cell growth. To study the potential involvement of serine-threonine specific phosphatases in these processes we used okadaic acid (OA), an inhibitor of type 1 and type 2A protein phosphatases. Here we present evidence that OA arrests cells at defined points in the cell cycle. Concomitantly, expression and associated histone H1 kinase activity of cdc2 and cyclin A, two cell cycle regulatory proteins, are repressed by this agent. Furthermore, phosphorylation of the tumor suppressor protein retinoblastoma, an event thought to be necessary in order to permit cells to proliferate, is inhibited when OA is present. These effects are fully reversible since removal of OA restores cdc2 and cyclin A expression as well as histone H1 kinase activity, and the cells resume growth. Since cdc2 and cyclin A have previously been shown to be absolutely required for cell cycle progression it is likely that blockage of synthesis of these components contributes to the cytostatic effects of OA. Furthermore, our results suggest a positive role for OA sensitive protein phosphatases in the regulation of expression of these cell cycle regulatory proteins.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item