Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Mildly oxidized low density lipoprotein activates multiple apoptotic signaling pathways in human coronary cells.

Published Web Location

https://faseb.onlinelibrary.wiley.com/doi/epdf/10.1096/fj.99-0986com
No data is associated with this publication.
Abstract

Apoptosis of arterial cells induced by oxidized low density lipoproteins (OxLDL) is thought to contribute to the progression of atherosclerosis. However, most data on apoptotic effects and mechanisms of OxLDL were obtained with extensively oxidized LDL unlikely to occur in early stages of atherosclerotic lesions. We now demonstrate that mildly oxidized LDL generated by incubation with oxygen radical-producing xanthine/xanthine oxidase (X/XO) induces apoptosis in primary cultures of human coronary endothelial and SMC, as determined by TUNEL technique, DNA laddering, and FACS analysis. Apoptosis was markedly reduced when X/XO-LDL was generated in the presence of different oxygen radical scavengers. Apoptotic signals were mediated by intramembrane domains of both Fas and tumor necrosis factor (TNF) receptors I and II. Blocking of Fas ligand (FasL) reduced apoptosis by 50% and simultaneous blocking of FasL and TNF receptors by 70%. Activation of apoptotic receptors was accompanied by an increase of proapoptotic and a decrease in antiapoptotic proteins of the Bcl-2 family and resulted in marked activation of class I and II caspases. Mildly oxidized LDL also activated MAP and Jun kinases and increased p53 and other transcription factors (ATF-2, ELK-1, CREB, AP-1). Inhibitors of Map and Jun kinase significantly reduced apoptosis. Our results provide the first evidence that OxLDL-induced apoptosis involves TNF receptors and Jun activation. More important, they demonstrate that even mildly oxidized LDL formed in atherosclerotic lesions may activate a broad cascade of oxygen radical-sensitive signaling pathways affecting apoptosis and other processes influencing the evolution of plaques. Thus, we suggest that extensive oxidative modifications of LDL are not necessary to influence signal transduction and transcription in vivo.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item