Skip to main content
Open Access Publications from the University of California

UC San Diego

UC San Diego Electronic Theses and Dissertations bannerUC San Diego

The role of collagen on the structural response of dermal layers in mammals and fish


We study in depth the role of collagen in the protective layers of mammals (skin) and fish (scales) in depth to reveal its contribution to their mechanical performance. In order to gain an understanding of the structure property relations, we investigate its hierarchical arrangement and how it results in a specialized response.

For rabbit skin, chosen as a model material for the dermis of vertebrates, deformation is expressed in terms of four mechanisms of collagen fibril activity that virtually eliminate the possibility of tearing in notched samples: fibril straightening, fibril reorientation towards the tensile direction, elastic stretching, and interfibrillar sliding. A model reflecting the in vivo shape of collagen is derived. The model incorporates the effects of its elasticity, viscoelasticity, and orientation.

For arapaima and alligator gar scales, we investigate their protective function and identify key features which result in their resistance to failure. For the elasmoid scales of the arapaima, we show that the scale has a Bouligand-like arrangement of collagen layers which stretch, rotate, and delaminate to dissipate energy and arrest cracking prior to catastrophic failure. Atop the foundation are mineral ridges; this arrangement provides high toughness and resistance to penetration by predator teeth. We show that the ganoid scales of the alligator gar have a boney composite foundation of collagen and hydroxyapatite as well as an external surface of pure hydroxyapatite. Failure averting features of the gar scale include: crack inhibiting mineral decussation in the external ganoine layer; mineral crystals and tubules which deflect cracks in the bony region; and saw-tooth ridges along the interface between the two scale layers which direct cracks away from the weak interface. Furthermore, the scale’s geometry is optimized to provide full coverage while accommodating physiological motion. Key features of the scale morphology are replicated in a bioinspired model which retains protection and flexibility.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View