Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Building on Cram's legacy: stimulated gating in hemicarcerands.

  • Author(s): Liu, Fang
  • Helgeson, Roger C
  • Houk, KN
  • et al.

Published Web Location

https://doi.org/10.1021/ar5001296
Abstract

CONSPECTUS: Donald Cram's pioneering Nobel Prize-winning work on host-guest molecules led eventually to his creation of the field of container molecules. Cram defined two types of container molecules: carcerands and hemicarcerands. Host-guest complexes of carcerands, called carceplexes, are formed during their synthesis; once a carceplex is formed, the trapped guest cannot exit without breaking covalent bonds. Cram defined a quantity called constrictive binding, arising from the mechanical force that prevents guest escape. The constrictive binding in carceplexes is high. In contrast, hemicarcerands have low constrictive binding and are able to release the incarcerated guests at elevated temperatures without breaking covalent bonds. We have designed molecules that can switch from carcerand to hemicarcerand through a change in structure that we call gating. The original discovery of gating in container molecules involved our computational studies of a Cram hemicarceplex that was observed to release a guest upon heating. We found that the side portals of this hemicarceplex have multiple thermally accessible conformations. An eight-membered ring that is part of a portal changes from a "chair" to a "boat" structure, leading to the enlargement of the side portal and the release of the guest. This type of gating is analogous to phenomena often observed with peptide loops in enzymes. We refer to this phenomenon as thermally controlled gating. We have also designed and synthesized redox and photochemically controlled gated hemicarceplexes. Gates are built onto host molecules so that the opening or closing of such gates is stimulated by reducing or oxidizing conditions, or by ultraviolet irradiation. In both cases, the appropriate stimuli can produce a carceplex (closed gates) or hemicarceplex (open gates). A hemicarceplex with closed gates behaves like a carceplex, due to its very high constrictive binding energy. When the gates are opened, constrictive binding is dramatically lowered, and guest entrance and exit become facile. This stimulated switching between open and closed states controls access of the guest to the binding site. The experimental and computational investigations of gated hemicarcerands and several potential applications of gated hemicarceplexes are described in this Account.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View