Skip to main content
eScholarship
Open Access Publications from the University of California

Dissociation of Neural Mechanisms for Intersensory Timing Deficits in Parkinson's Disease

  • Author(s): Harrington, DL
  • Castillo, GN
  • Reed, JD
  • Song, DD
  • Litvan, I
  • Lee, RR
  • et al.

Published Web Location

https://brill.com/view/journals/time/2/2/article-p145_2.xml
No data is associated with this publication.
Abstract

© 2014 Copyright 2014 by Koninklijke Brill NV, Leiden, The Netherlands. This study investigated the ability of individuals with Parkinson's disease (PD) to synthesize temporal information across the senses, namely audition and vision. Auditory signals (A) are perceived as lasting longer than visual signals (V) when they are compared together, since attention is captured and sustained more easily than for visual information. We used the audiovisual illusion to probe for disturbances in brain networks that govern the resolution of time in two intersensory conditions that putatively differ in their attention demands. PD patients and controls judged the relative duration of successively presented pairs of unimodal (AA, VV) and crossmodal (VA, AV) signals whilst undergoing fMRI. There were four main findings. First, underestimation of time was exaggerated in PD when timing depended on controlled attention (AV), whereas subtle deficits were found when audition dominated and attention was more easily sustained (VA). Second, group differences in regional activation were observed only for the AV-unimodal comparison, where the PD group failed to modulate basal ganglia, anterior insula, and inferior cerebellum activity in accord with the timing condition. Third, the intersensory timing conditions were dissociated by patterns of abnormal functional connectivity. When intersensory timing emphasized controlled attention, patients showed weakened connectivity of the cortico-thalamus-basal ganglia (CTBG) circuit and the anterior insula with widespread cortical regions, yet enhanced cerebellar connectivity. When audition dominated intersensory timing, patients showed enhanced connectivity of CTBG elements, the anterior insula, and the cerebellum with the caudate tail and frontal cortex. Fourth, abnormal connectivity measures showed excellent sensitivity and specificity in accurately classifying subjects. The results demonstrate that intersensory timing deficits in PD were well characterized by context-dependent patterns of functional connectivity within a presumed core timing system (CTBG) and a ventral attention hub (anterior insula), and enhanced cerebellar connectivity irrespective of the hypothesized attention demands of timing.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item