Skip to main content
Open Access Publications from the University of California

A Characterization of Certain Bounded, Convex Domains

  • Author(s): Noack, Dylan Patrick
  • Advisor(s): Wong, Bun
  • et al.

Because the Riemann Mapping Theorem does not hold in several complex variables, it is of interest to fully classify the simply connected domains. By considering convex, bounded domains with noncompact automorphism groups, we can define a rescaling sequence based

on the boundary-accumulating automorphism orbit. If this orbit converges nontangentially we prove the accumulation point is of finite type in the sense of D’Angelo. This both provides a partial proof to the Greene-Krantz conjecture and also classifies such domains as polynomial ellipsoids.

Main Content
Current View