Skip to main content
Download PDF
- Main
Multiparametric mapping in the brain from conventional contrast‐weighted images using deep learning
Published Web Location
https://doi.org/10.1002/mrm.28962Abstract
Purpose
To develop a deep-learning-based method to quantify multiple parameters in the brain from conventional contrast-weighted images.Methods
Eighteen subjects were imaged using an MR Multitasking sequence to generate reference T1 and T2 maps in the brain. Conventional contrast-weighted images consisting of T1 MPRAGE, T1 GRE, and T2 FLAIR were acquired as input images. A U-Net-based neural network was trained to estimate T1 and T2 maps simultaneously from the contrast-weighted images. Six-fold cross-validation was performed to compare the network outputs with the MR Multitasking references.Results
The deep-learning T1 /T2 maps were comparable with the references, and brain tissue structures and image contrasts were well preserved. A peak signal-to-noise ratio >32 dB and a structural similarity index >0.97 were achieved for both parameter maps. Calculated on brain parenchyma (excluding CSF), the mean absolute errors (and mean percentage errors) for T1 and T2 maps were 52.7 ms (5.1%) and 5.4 ms (7.1%), respectively. ROI measurements on four tissue compartments (cortical gray matter, white matter, putamen, and thalamus) showed that T1 and T2 values provided by the network outputs were in agreement with the MR Multitasking reference maps. The mean differences were smaller than ± 1%, and limits of agreement were within ± 5% for T1 and within ± 10% for T2 after taking the mean differences into account.Conclusion
A deep-learning-based technique was developed to estimate T1 and T2 maps from conventional contrast-weighted images in the brain, enabling simultaneous qualitative and quantitative MRI without modifying clinical protocols.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%