- Main
Optimization Methods on Synthesis of Atomically Thin Layered Materials and Heterostructures
- Temiz, Selcuk
- Advisor(s): Ozkan, Cengiz S;
- Ozkan, Mihrimah
Abstract
Two dimensional (2D) materials have emerged as a new class of materials that only a few atoms thick. Owing to their low dimensionality, 2D materials bear rather unusual properties that do not exist in traditional three dimensional (3D) materials. Graphene, a single layer of carbon atoms arrange in a 2D hexagonal lattice, has started the revolutionary progress in materials science and condensed matter physics, and motivated intense research in other 2D materials such as h-BN, and layered metal dichalcogenides.
Chemical vapor deposition (CVD) is the most studied bottom-up graphene production method for building the prototypes of next-generation electronic devices due to its scalability; however, there is still not an ultimate consensus of growth mechanisms on control the size and morphology of synthesized-crystals. In order to have better understanding the growth mechanisms, the role of oxygen exposure in the graphene growth has been comprehensively studied. The oxygen gas is introduced into the CVD reactor before and during the growth, and its effects on the morphology, crystallinity, and nucleation density of graphene are systematically studied. It is found that introducing oxygen during growth significantly improves the graphene crystallinity while pre-dosing oxygen before growth reduces the graphene nucleation density.
The stacking of graphene and other layered materials in the lateral or vertical geometries can offer extended functionality by exploiting interfacial phenomena, quantum confinement and tunneling, which requires the interface between the layered materials be free of contaminates. The vertical heterostructures of CVD-grown graphene and h-BN single crystals are deeply investigated by analytical scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS). It is shown that graphene contamination, undetectable using optical microscopy, is prevalent at the nanoscale, and the interfacial contamination between the layers reduces the interlayer coupling and ultimately undermines the graphene/h-BN heterostructures.
Raman spectroscopy is a versatile and non-destructive technique for the identification of structural properties and phonon features of atomically thin layered materials. Especially, the second order resonant Raman spectroscopy, which can be applied to the resonance conditions in energy of the incoming photon and interband transitions of an electron in a crystal lattice, reveals additional phonon modes to typical Raman active modes in a spectra. Various 2D materials, including SnSe2, WSe2, SnS2, and MoTe2, and their heterostructures are fabricated by dry transfer method as a top-down approach. The vibrational characteristics of these 2D materials systems are unambiguously established by using second order Resonant Raman spectroscopy.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-