Skip to main content
Open Access Publications from the University of California


UCLA Previously Published Works bannerUCLA

The prediction-error hypothesis of schizophrenia: new data point to circuit-specific changes in dopamine activity.


Schizophrenia is a severe psychiatric disorder affecting 21 million people worldwide. People with schizophrenia suffer from symptoms including psychosis and delusions, apathy, anhedonia, and cognitive deficits. Strikingly, schizophrenia is characterised by a learning paradox involving difficulties learning from rewarding events, whilst simultaneously 'overlearning' about irrelevant or neutral information. While dysfunction in dopaminergic signalling has long been linked to the pathophysiology of schizophrenia, a cohesive framework that accounts for this learning paradox remains elusive. Recently, there has been an explosion of new research investigating how dopamine contributes to reinforcement learning, which illustrates that midbrain dopamine contributes in complex ways to reinforcement learning, not previously envisioned. This new data brings new possibilities for how dopamine signalling contributes to the symptomatology of schizophrenia. Building on recent work, we present a new neural framework for how we might envision specific dopamine circuits contributing to this learning paradox in schizophrenia in the context of models of reinforcement learning. Further, we discuss avenues of preclinical research with the use of cutting-edge neuroscience techniques where aspects of this model may be tested. Ultimately, it is hoped that this review will spur to action more research utilising specific reinforcement learning paradigms in preclinical models of schizophrenia, to reconcile seemingly disparate symptomatology and develop more efficient therapeutics.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View