- Main
Comprehensive functional genomic resource and integrative model for the human brain
- Wang, Daifeng;
- Liu, Shuang;
- Warrell, Jonathan;
- Won, Hyejung;
- Shi, Xu;
- Navarro, Fabio CP;
- Clarke, Declan;
- Gu, Mengting;
- Emani, Prashant;
- Yang, Yucheng T;
- Xu, Min;
- Gandal, Michael J;
- Lou, Shaoke;
- Zhang, Jing;
- Park, Jonathan J;
- Yan, Chengfei;
- Rhie, Suhn Kyong;
- Manakongtreecheep, Kasidet;
- Zhou, Holly;
- Nathan, Aparna;
- Peters, Mette;
- Mattei, Eugenio;
- Fitzgerald, Dominic;
- Brunetti, Tonya;
- Moore, Jill;
- Jiang, Yan;
- Girdhar, Kiran;
- Hoffman, Gabriel E;
- Kalayci, Selim;
- Gümüş, Zeynep H;
- Crawford, Gregory E;
- Roussos, Panos;
- Akbarian, Schahram;
- Jaffe, Andrew E;
- White, Kevin P;
- Weng, Zhiping;
- Sestan, Nenad;
- Geschwind, Daniel H;
- Knowles, James A;
- Gerstein, Mark B;
- Ashley-Koch, Allison E;
- Crawford, Gregory E;
- Garrett, Melanie E;
- Song, Lingyun;
- Safi, Alexias;
- Johnson, Graham D;
- Wray, Gregory A;
- Reddy, Timothy E;
- Goes, Fernando S;
- Zandi, Peter;
- Bryois, Julien;
- Jaffe, Andrew E;
- Price, Amanda J;
- Ivanov, Nikolay A;
- Collado-Torres, Leonardo;
- Hyde, Thomas M;
- Burke, Emily E;
- Kleiman, Joel E;
- Tao, Ran;
- Shin, Joo Heon;
- Akbarian, Schahram;
- Girdhar, Kiran;
- Jiang, Yan;
- Kundakovic, Marija;
- Brown, Leanne;
- Kassim, Bibi S;
- Park, Royce B;
- Wiseman, Jennifer R;
- Zharovsky, Elizabeth;
- Jacobov, Rivka;
- Devillers, Olivia;
- Flatow, Elie;
- Hoffman, Gabriel E;
- Lipska, Barbara K;
- Lewis, David A;
- Haroutunian, Vahram;
- Hahn, Chang-Gyu;
- Charney, Alexander W;
- Dracheva, Stella;
- Kozlenkov, Alexey;
- Belmont, Judson;
- DelValle, Diane;
- Francoeur, Nancy;
- Hadjimichael, Evi;
- Pinto, Dalila;
- van Bakel, Harm;
- Roussos, Panos;
- Fullard, John F;
- Bendl, Jaroslav;
- Hauberg, Mads E;
- Mangravite, Lara M;
- Peters, Mette A;
- Chae, Yooree;
- Peng, Junmin;
- Niu, Mingming;
- Wang, Xusheng;
- Webster, Maree J;
- Beach, Thomas G;
- Chen, Chao;
- Jiang, Yi;
- Dai, Rujia;
- Shieh, Annie W;
- Liu, Chunyu;
- Grennan, Kay S;
- Xia, Yan;
- Vadukapuram, Ramu;
- Wang, Yongjun;
- Fitzgerald, Dominic;
- Cheng, Lijun;
- Brown, Miguel;
- Brown, Mimi;
- Brunetti, Tonya;
- Goodman, Thomas;
- Alsayed, Majd;
- Gandal, Michael J;
- Geschwind, Daniel H;
- Won, Hyejung;
- Polioudakis, Damon;
- Wamsley, Brie;
- Yin, Jiani;
- Hadzic, Tarik;
- De La Torre Ubieta, Luis;
- Swarup, Vivek;
- Sanders, Stephan J;
- State, Matthew W;
- Werling, Donna M;
- An, Joon-Yong;
- Sheppard, Brooke;
- Willsey, A Jeremy;
- White, Kevin P;
- Ray, Mohana;
- Giase, Gina;
- Kefi, Amira;
- Mattei, Eugenio;
- Purcaro, Michael;
- Weng, Zhiping;
- Moore, Jill;
- Pratt, Henry;
- Huey, Jack;
- Borrman, Tyler;
- Sullivan, Patrick F;
- Giusti-Rodriguez, Paola;
- Kim, Yunjung;
- Sullivan, Patrick;
- Szatkiewicz, Jin;
- Rhie, Suhn Kyong;
- Armoskus, Christoper;
- Camarena, Adrian;
- Farnham, Peggy J;
- Spitsyna, Valeria N;
- Witt, Heather;
- Schreiner, Shannon;
- Evgrafov, Oleg V;
- Knowles, James A;
- Gerstein, Mark;
- Liu, Shuang;
- Wang, Daifeng;
- Navarro, Fabio CP;
- Warrell, Jonathan;
- Clarke, Declan;
- Emani, Prashant S;
- Gu, Mengting;
- Shi, Xu;
- Xu, Min;
- Yang, Yucheng T;
- Kitchen, Robert R;
- Gürsoy, Gamze;
- Zhang, Jing;
- Carlyle, Becky C;
- Nairn, Angus C;
- Li, Mingfeng;
- Pochareddy, Sirisha;
- Sestan, Nenad;
- Skarica, Mario;
- Li, Zhen;
- Sousa, Andre MM;
- Santpere, Gabriel;
- Choi, Jinmyung;
- Zhu, Ying;
- Gao, Tianliuyun;
- Miller, Daniel J;
- Cherskov, Adriana;
- Yang, Mo;
- Amiri, Anahita;
- Coppola, Gianfilippo;
- Mariani, Jessica;
- Scuderi, Soraya;
- Szekely, Anna;
- Vaccarino, Flora M;
- Wu, Feinan;
- Weissman, Sherman;
- Roychowdhury, Tanmoy;
- Abyzov, Alexej
- et al.
Published Web Location
https://doi.org/10.1126/science.aat8464Abstract
Despite progress in defining genetic risk for psychiatric disorders, their molecular mechanisms remain elusive. Addressing this, the PsychENCODE Consortium has generated a comprehensive online resource for the adult brain across 1866 individuals. The PsychENCODE resource contains ~79,000 brain-active enhancers, sets of Hi-C linkages, and topologically associating domains; single-cell expression profiles for many cell types; expression quantitative-trait loci (QTLs); and further QTLs associated with chromatin, splicing, and cell-type proportions. Integration shows that varying cell-type proportions largely account for the cross-population variation in expression (with >88% reconstruction accuracy). It also allows building of a gene regulatory network, linking genome-wide association study variants to genes (e.g., 321 for schizophrenia). We embed this network into an interpretable deep-learning model, which improves disease prediction by ~6-fold versus polygenic risk scores and identifies key genes and pathways in psychiatric disorders.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.