Skip to main content
Open Access Publications from the University of California

UC Santa Cruz

UC Santa Cruz Electronic Theses and Dissertations bannerUC Santa Cruz

String Homology and Lie Algebra Structures

Creative Commons 'BY-NC-ND' version 4.0 license

Chas and Sullivan introduced string homology, which is the equivariant homology of the loop space with the circle action on loops by rotation. Craig Westerland computed the string homology for spheres with coeffcients in Z_2 and in Somnath Basu's dissertation, he computes the string homology and string bracket for spheres over rational coefficients, and he finds that the bracket is trivial. In this paper, we compute string homology and the string bracket for spheres with integer coefficients, treating the odd- and even-dimensional cases separately. We use the Gysin sequence and Leray-Serre spectral sequence to aid in our computations. We find that over the integers, the string Lie algebra bracket structure is more interesting, and not always zero as in Basu's thesis. The string bracket turns out to be non-zero on torsion coming from string homology. We also make some computations of the Goldman Lie algebra structure, and more generally, the string Lie algebra structure of closed, orientable surfaces.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View