Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

ACT3: a putative centractin homologue in S. cerevisiae is required for proper orientation of the mitotic spindle.

  • Author(s): Clark, SW
  • Meyer, DI
  • et al.
Abstract

As part of our ongoing efforts to understand the functional role of vertebrate centractins, we have identified a new member of the actin-related family of proteins in the yeast Saccharomyces cerevisiae using a PCR-based approach. Consistent with the current nomenclature for actin-related proteins in yeast, we propose to denote this locus ACT3. The primary amino acid sequence of Act3p is most similar to canine and human alpha-centractin (73% similarity/54% identity). The sequence of a genomic clone indicates ACT3 lies adjacent to and is transcribed convergently with respect to FUR1 on chromosome VIII. Molecular genetic analysis indicates ACT3 is represented by a single gene from which the corresponding mRNA is expressed at a low level compared to ACT1. Tetrad analysis of heterozygotes harboring a TRP1 replacement of the ACT3-coding region indicates ACT3 is nonessential for growth under normal conditions and at extremes of temperature and osmolarity. However, growth at 14 degrees C indicates a spindle orientation defect similar to phenotypes recently described for yeast harboring mutations in actin, tubulin, or cytoplasmic dynein. Taken together, our data suggest that ACT3 is the S. cerevisiae homologue of vertebrate centractins.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View