Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Epilepsy channelopathies go neddy: stabilizing NaV1.1 channels by neddylation.

Published Web Location

https://doi.org/10.1172/JCI148370
Abstract

Loss-of-function mutations of SCN1A encoding the pore-forming α subunit of the NaV1.1 neuronal sodium channel cause a severe developmental epileptic encephalopathy, Dravet syndrome (DS). In this issue of the JCI, Chen, Luo, Gao, et al. describe a phenocopy for DS in mice deficient for posttranslational conjugation with neural precursor cell expressed, developmentally downregulated 8 (NEDD8) (neddylation), selectively engineered in inhibitory interneurons. Pursuing the possibility that this phenotype is also caused by loss of NaV1.1, Chen, Luo, Gao, and colleagues show that interneuron excitability and GABA release are impaired, NaV1.1 degradation rate is increased with a commensurate decrease of NaV1.1 protein, and NaV1.1 is a substrate for neddylation. These findings establish neddylation as a mechanism for stabilizing NaV1.1 subunits and suggest another pathomechanism for epileptic sodium channelopathy.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View