Skip to main content
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Genetic and molecular characterization of the VRN2 loci in tetraploid wheat.

  • Author(s): Distelfeld, Assaf;
  • Tranquilli, Gabriela;
  • Li, Chengxia;
  • Yan, Liuling;
  • Dubcovsky, Jorge
  • et al.

Published Web Location
No data is associated with this publication.

Winter wheat (Triticum spp.) varieties require long exposures to low temperatures to flower, a process called vernalization. The VRN2 locus includes two completely linked zinc finger-CCT domain genes (ZCCT1 and ZCCT2) that act as flowering repressors down-regulated during vernalization. Deletions or mutations in these two genes result in the elimination of the vernalization requirement in diploid wheat (Triticum monococcum). However, natural allelic variation in these genes has not been described so far in polyploid wheat (tetraploid Triticum turgidum and hexaploid Triticum aestivum). A tetraploid wheat population segregating for both VRN-A2 and VRN-B2 loci facilitated the characterization of different alleles. Comparisons between functional and nonfunctional alleles revealed that both ZCCT1 and ZCCT2 genes are able to confer vernalization requirement and that different ZCCT genes are functional in different genomes. ZCCT1 and ZCCT2 proteins from nonfunctional vrn2 alleles have mutations at arginine amino acids at position 16, 35, or 39 of the CCT domain. These positions are conserved between CCT and HEME ACTIVATOR PROTEIN2 (HAP2) proteins, supporting a model in which the action of CCT domains is mediated by their interactions with HAP2/HAP3/HAP5 complexes. This study also revealed natural variation in gene copy number, including a duplication of the functional ZCCT-B2 gene and deletions or duplications of the complete VRN-B2 locus. Allelic variation at the VRN-B2 locus was associated with a partially dominant effect, which suggests that variation in the number of functional ZCCT genes can be used to expand allelic diversity for heading time in polyploid wheat and, hopefully, improve its adaptation to different environments.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item