Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Atomic force microscopy determination of Young׳s modulus of bovine extra-ocular tendon fiber bundles

Abstract

Extra-ocular tendons (EOTs) transmit the oculorotary force of the muscles to the eyeball to generate dynamic eye movements and align the eyes, yet the mechanical properties of the EOTs remain undefined. The EOTs are known to be composed of parallel bundles of small fibers whose mechanical properties must be determined in order to characterize the overall behavior of EOTs. The current study aimed to investigate the transverse Young׳s modulus of EOT fiber bundles using atomic force microscopy (AFM). Fresh bovine EOT fiber bundle specimens were maintained under temperature and humidity control, and indented 100nm by the inverted pyramid tip of an AFM (Veeco Digital Instruments, NY). Ten indentations were conducted for each of 3 different locations of 10 different specimens from each of 6 EOTs, comprising a total of 1800 indentations. Young׳s modulus for each EOT was determined using a Hertzian contact model. Young׳s moduli for fiber bundles from all six EOTs were determined. Mean Young׳s moduli for fiber bundles were similar for the six anatomical EOTs: lateral rectus 60.12±2.69 (±SD)MPa, inferior rectus 59.69±5.34MPa, medial rectus 56.92±1.91MPa, superior rectus 59.66±2.64MPa, inferior oblique 57.7±1.36MPa, and superior oblique 59.15±2.03. Variation in Young׳s moduli among the six EOTs was not significant (P>0.25). The Young׳s modulus of bovine EOT fibers is highly uniform among the six extraocular muscles, suggesting that each EOT is assembled from fiber bundles representing the same biomechanical elements. This uniformity will simplify overall modeling.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View