Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Ab initio phonon dispersion in crystalline naphthalene using van der Waals density functionals

Published Web Location

https://link.aps.org/accepted/10.1103/PhysRevB.93.195206
No data is associated with this publication.
Abstract

Acene molecular crystals are of current interest in organic optoelectronics, both as active materials and for exploring and understanding new phenomena. Phonon scattering can be an important facilitator and dissipation mechanism in charge separation and carrier transport processes. Here, we carry out density functional theory (DFT) calculations of the structure and the full phonon dispersion of crystalline naphthalene, a well-characterized acene crystal for which detailed neutron-diffraction measurements, as well as infrared and Raman spectroscopy, are available. We evaluate the performance, relative to experiments, of DFT within the local density approximation (LDA); the generalized gradient approximation of Perdew, Burke, and Ernzerhof (PBE); and a recent van der Waals-corrected nonlocal correlation (vdW-DF-cx) functional. We find that the vdW-DF-cx functional accurately predicts lattice parameters of naphthalene within 1%. Intermolecular and intramolecular phonon frequencies across the Brillouin zone are reproduced within 7.8% and 1%, respectively. As expected, LDA (PBE) underestimates (overestimates) the lattice parameters and overestimates (underestimates) phonon frequencies, demonstrating their shortcomings for predictive calculations of weakly bound materials. If the unit cell is fixed to the experimental lattice parameters, PBE is shown to lead to improved phonon frequencies. Our study provides a detailed understanding of the phonon spectrum of naphthalene, and highlights the importance of including van der Waals dispersion interactions in predictive calculations of lattice parameters and phonon frequencies of molecular crystals and related organic materials.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item