Skip to main content
Open Access Publications from the University of California

Preparation and Capacity-Fading Investigation of Polymer-Derived Silicon Carbonitride Anode for Lithium-Ion Battery


Polymer-derived silicon carbonitride (SiCN) materials have been synthesized via pyrolyzing from five poly(silylcarbondiimide)s with different contents of carbon (labeled as 1-5#). The morphological and structural measurements show that the SiCN materials are mixtures of nanocrystals of SiC, Si3N4, and graphite. The SiCN materials have been used as anodes for lithium-ion batteries. Among the five polymer-derived SiCN materials, 5#SiCN, derived from dichloromethylvinylsilane and di-n-octyldichlorosilane, has the best cycle stability and a high-rate performance at the low cutoff voltage of 0.01-1.0 V. In lithium-ion half-cells, the specific delithiation capacity of 5#SiCN anode still remains at 826.7 mA h g-1 after 100 charge/discharge cycles; it can even deliver the capacity above 550 mA h g-1 at high current densities of 1.6 and 2 A g-1. In lithium-ion full cells, 5#SiCN anode works well with LiNi0.6Co0.2Mn0.2O2 commercial cathode. The outstanding electrochemical performance of 5#SiCN anode is attributed to two factors: (1) the formation of a stable and compact solid electrolyte interface layer on the anode surface anode, which protects the electrode from cracking during the charge/discharge cycle; and (2) a large amount of carbon component and the less Si3N4 phase in the 5#SiCN structure, which provides an electrochemical reactive and conductive environment in the SiCN structure, benefit the lithiation/delithiation process. In addition, we explore the reason for the capacity fading of these SiCN anodes.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View