Skip to main content
eScholarship
Open Access Publications from the University of California

Effects of aspirin in combination with EPA and DHA on HDL-C cholesterol and ApoA1 exchange in individuals with type 2 diabetes mellitus

Abstract

Background/synopsis

Low-dose aspirin is an effective drug for the prevention of cardiovascular disease (CVD) events but individuals with diabetes mellitus can be subject to 'aspirin resistance'. Thus, aspirin's effect in these individuals is controversial. Higher blood levels of seafood-derived omega-3 polyunsaturated fatty acids (ω3) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) also have beneficial effects in reducing risk of CVD events but few studies have examined the interaction of plasma EPA and DHA with aspirin ingestion.

Objective/purpose

Our study examined the combinatory effects of EPA, DHA, and aspirin ingestion on HDL-cholesterol (HDL-C) and apoA-I exchange (shown to be associated with CVD event risk).

Methods

30 adults with Type 2 diabetes mellitus ingested aspirin (81mg/day) for 7 consecutive days, EPA+DHA (2.6g/day) for 28 days, then both for 7 days. Plasma was collected at baseline and at 5 subsequent visits including 4h after each aspirin ingestion. Mixed model methods were used to determine HDL-C-concentrations and apoA-I exchange compared to the baseline visit values. LOWESS curves were used for non-linear analyses of outcomes to help discern change patterns, which was followed by piecewise linear functions for formal testing of curvilinear relationships.

Results

Significant changes (p < 0.05) compared to baseline in both HDL-C-concentrations and apoA-I exchange were present at different times. After 7 days of aspirin-only ingestion, apoA-I exchange was significantly modified by increasing levels of DHA concentration, with increased apoA-I exchange observed up until log(DHA) of 4.6 and decreased exchange thereafter (p = 0.03). These LOWESS curve effects were not observed for EPA or HDL-C (p > 0.05). Aspirin's effects on apoA-I exchange were the greatest when EPA or DHA concentrations were moderate compared to high or low. Comparison of EPA, DHA, and EPA+DHA LOWESS curves, demonstrated that the majority of the effect is due to DHA.

Conclusion

Our results strongly suggest that plasma concentrations of EPA and DHA influence aspirin effects on lipid mediators of CVD event risk where their concentrations are most beneficial when moderate, not high or low. These effects on HDL-C cholesterol and apoA-I exchange are novel. Personalized dosing of DHA in those who take aspirin may be a beneficial option for patients with type 2 diabetes mellitus.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View